テクノロジーがわかるとクルマはもっと面白い。未来を予見する自動車技術情報サイト

  • 2018/07/02
  • Motor Fan illustrated編集部

クーガー:AIの学習履歴・実行履歴をブロックチェーンに記録しAIの信頼性を担保するシステム「GeneFlow」を開発

このエントリーをはてなブックマークに追加
クーガーは、AIの学習履歴・実行履歴をブロックチェーンに記録し、AIの信頼性を担保するシステム「GeneFlow(ジーンフロー)」を開発した。あわせて、本技術のクローズドテスト開始にあたり、外部パートナー企業を募集する。

 クーガーは、AI・IoT・AR/VR・ブロックチェーンを組み合わせ、空間をスマート化するテクノロジー「Connectome(コネクトーム)」の一部として、AIの学習履歴・実行履歴をブロックチェーンに記録し、AIの信頼性を担保するシステム「GeneFlow(ジーンフロー)」を開発した。あわせて、本技術のクローズドテスト開始にあたり、外部パートナー企業を募集する。

 クーガーはAI・ロボティクスの技術開発の中で、AIの学習履歴・実行履歴で信頼性を確認できるGeneFlowプロジェクトに早期から取り組んでおり、主要パブリックブロックチェーン「Ethereum(イーサリアム)」および、コンソーシアム型ブロックチェーン「Quorum(クォーラム)」に対応した技術開発を進めてきた。今後は、内部での実証実験に加え、外部パートナーとのクローズドテストを実施し、実際の用途で求められるパフォーマンスや大規模データへの対応を目指す。

 AIの分野は機械学習およびその関連技術であるDeep Learningにより大きく進化を続けている。機械学習の特徴は、アルゴリズムよりも学習するデータに大きく依存する点であり、学習データ次第でどのようなAIにもなり得る。ロボットなど高度で複雑な判断をするハードウェアの自動化を実現するためには、無数の学習データを活用して学習させることが必須。これに伴いAIの判断根拠がわからない「ブラックボックス問題」が懸念されている。

 また、これからIoT全盛時代を迎え、自動運転車やドローン、スマートスピーカーをはじめとする無数のハードウェアがインターネットに接続されることにより、通信データの量と種類が爆発的に増大する。それに伴い、それらのデータをリアルタイムに近い形で処理するAIが、あらゆるデバイスに搭載される「AI Everywhere」の状態になると予想される。

 その際に重要になるのが、意思決定や動作の信頼性を担保するために、「AIがどんなデータを学習してきたのか」「AIの判断結果(実行結果)はどうだったか」という履歴だ。

 GeneFlowは、学習処理、実行処理(推論処理)、最適モデル選択の3機能に分類される。学習処理では、AIがどんなデータで学習を行ってきたかという学習履歴をブロックチェーンに保存。その際、学習済みモデルと学習データは分散型ファイルシステムに格納される。実行処理では、学習済みモデルを分散型ファイルシステムから呼び出し、対象データに対する実行結果を表示する。最適モデル選択では、様々な組み合わせで生成された複数の学習済みモデルを評価し、最適となるモデルが選択可能となる。

 これらのすべての履歴はブロックチェーン上に記録されていくため、改竄(かいざん)されたり消失することがなく、AIの動作や成り立ちに大きな信頼を与える。加えて、履歴が確約されるため、信頼性が高い安全な学習データや学習済みモデルを複数の企業や研究機関で共有することも可能だ。

自動車業界の最新情報をお届けします!


自動車業界 特選求人情報|MotorFanTechキャリア

自動車業界を支える”エンジニアリング“ 、”テクノロジー”情報をお届けするモーターファンテックの厳選転職情報特集ページ


大車林

大車林

基礎原理から最新技術、産業、環境、行政、モータースポーツ、デザインまで、クルマ社会をキーワードで理解する自動車総合情報・専門用語事典『大車林』の検索サービスです。

キーワードを検索
注目のキーワード
FIA
国際自動車連盟。JAFやADACなど各国の自動車協会が加盟する国際連盟で、いわば自動...
半球形燃焼室
球殻の一部を壁面とした燃焼室。一般に2バルブエンジンに用いられ、球殻に吸排気バ...
スーパーチャージャー
新気を加圧して、周囲の大気圧力以上にしてエンジンに供給する給気装置。排気ター...

カーライフに関するサービス

オートモーティブジョブズ

ランキング

もっと見る