ルネサス:車載半導体用に厳しい環境でも安定して動作する高速・高精度A/D変換回路を開発
- 2020/02/20
- Motor Fan illustrated編集部

ルネサス エレクトロニクスは、このたび、日立製作所と共同で、ΔΣ(デルタシグマ)変調器を常時デジタル補正する技術と、その技術を適用したA/D変換回路を開発した。
車載用の厳しい環境でも安定した特性を得られるようΔΣ A/D変換器の性能を向上するために、(1)LMS(Least Mean Square:最小二乗平均)アルゴリズムを使用して常時ΔΣ変調器の伝達関数を計測・補正する高精度化技術と、(2)係数探索回路とFIRデジタルフィルタの次数と動作周波数を低減することにより電力削減を可能とした、世界初のマルチレートLMS探索アルゴリズムを新たに開発した。今回、これらの技術を28nmプロセスにて、高速動作する連続型積分器を用いたマルチステージ型ΔΣA/D変換器に実装した。
従来、デジタル補正回路はA/D変換器のオーバサンプリング周波数で動作させる必要があったが、新しい回路は従来方式の1/4の周波数で動作する。これにより、オーバサンプリング周波数480MHz時に信号帯域15MHz、ダイナミックレンジ74.3dBの高速・高精度を達成し、デジタル補正回路の動作周波数は120MHzに低減することで消費電力37mW(アナログ:19mW、デジタル:18mW)の低電力を実現した。さらに結果として、本技術が広い温度範囲で特性が一定であることを確認し、厳しい環境でも安定した動作を実現する高いロバスト性を実証した(注1)。
ルネサスは、日立と共に今回の成果を、2020年2月16日から20日まで米国サンフランシスコで開催中の「国際固体素子回路会議 ISSCC 2020(International Solid-State Circuits Conference 2020)」にて、現地時間の2月18日に発表した。
近年、自動車は、ADAS(先進運転支援システム)や自動運転の実現に向けて、物体や人、環境認識のためにミリ波レーダ、LiDAR、超音波などの様々なセンサが用いられている。これらのセンサのアナログ信号をデジタル信号に変換するA/D変換器には、高速・高精度が求められるが、従来、車載特有の厳しい環境において特性を安定させることが課題だった。そこでルネサスは、高い環境適応性を持った高速・高精度なΔΣ A/D変換器を実現するために、新しい常時デジタル補正技術を開発した。
ルネサスが、日立と共同で開発したA/D変換回路の新技術は以下の通りである。
(1)LMSアルゴリズムを使用して、常時ΔΣ変調器の伝達関数を計測・補正する技術
一般的に、ΔΣ A/D変換器の高速化手法としては、入力のサンプリング容量が不要で高帯域化に適したRC積分器を多段に接続し、ΔΣ変調器の次数を高くする手法がとられるが、過大入力に対してΔΣ変調器が発振し精度を損なうという課題がある。一方、ΔΣ A/D変換器の安定性を確保してΔΣ変調器次数を高める手法として、低次のΔΣ変調器を多段接続するマルチステージ型ΔΣ変調器がある。しかしながら、マルチステージ型はアナログ伝達特性とデジタル伝達特性が完全に一致しないと精度が劣化するため、温度等の環境変動に弱く、高精度化が難しいという問題があった。
ルネサスは日立と共に、安定性に優れるが高精度化が難しかったマルチステージ型ΔΣ変調器の問題を解決するために、ΔΣ変調器の伝達関数をデジタル回路で補正する技術を開発した。本技術は、参照信号として疑似乱数信号をマルチステージ型ΔΣ変調器の第一変調器の量子化器に入力することにより、第一変調器の雑音伝達関数、第二変調器の信号伝達関数を同時に、LMSアルゴリズムを用いて常時探索することを可能にした。LMSアルゴリズムで探索した係数をFIR型デジタルフィルタに入力し、第一変調器の量子化誤差を第二変調器の結果を使用して完全にキャンセルすることで、高精度なA/D変換結果を得ることが可能になった。この新技術により、温度等の環境変動でアナログ積分器の特性が変動しても、常時デジタル領域で補正が可能である。これにより、安定性の高いマルチステージ型ΔΣ変調器において、これまで困難だった高精度とロバスト性を両立させることに成功した(注1)。
(2)回路規模削減と低消費電力を実現する世界初のマルチレートLMS探索アルゴリズム
(1)のLMSアルゴリズムを用いてΔΣ変調器の伝達関数を探索する場合は、積分器のアンプ回路の利得帯域幅積が不足すると、FIR型のデジタルフィルタに必要なTap数が膨大(>100個)になり、論理回路の規模的に実現困難という課題があった。今回、信号帯域周辺の伝達関数特性のみ抽出すれば十分に伝達関数を補正可能であることを見出し、ポストコンディショナで不要な周波数情報を除去することで、アンプ回路の利得帯域幅積が小さくてもTap数を大幅に削減することを新たに可能にした。さらに、シフトレジスタで参照信号データを保持することで、間引き後の影響がないようなLMSアルゴリズムの補正回路を新たに開発し、係数探索とFIRフィルタの動作周波数を1/4に低減させることを可能とした。この世界で初めて開発したデジタル補正回路技術を用いることで、デジタル回路規模削減と消費電力の低減に成功した(注2)。
(注1)テストチップに搭載したA/D変換器の特性から、温度-20~125℃の温度範囲で伝達関数の係数探索が常時追従することを確認し、SNRの変動が±1dB以下であることを確認した。
(注2)本A/D変換器では積分器のアンプ回路の利得帯域幅積が不足している場合、FIRフィルタのTap数が従来手法だと100個以上でも不足するところを、10個まで削減させることに成功した。
|
|

自動車業界の最新情報をお届けします!
Follow @MotorFanwebおすすめのバックナンバー
自動車業界 特選求人情報|Motor-FanTechキャリア
「自動車業界を支える”エンジニアリング“ 、”テクノロジー”情報をお届けするモーターファンテックの厳選転職情報特集ページ
ダイハツ工業株式会社
実験・評価<車載電子・電装部品/先進安全車両>
年収
400万円〜800万円
勤務地 滋賀県蒲生郡竜王町
この求人を詳しく見る
武蔵精密工業株式会社
社内SE
年収
450万円〜650万円
勤務地 愛知県豊橋市
この求人を詳しく見る
「自動車業界を支える”エンジニアリング“ 、”テクノロジー”情報をお届けするモーターファンテックの厳選転職情報特集ページ

ダイハツ工業株式会社 実験・評価<車載電子・電装部品/先進安全車両>
年収 | 400万円〜800万円 |
---|---|
勤務地 | 滋賀県蒲生郡竜王町 |
武蔵精密工業株式会社 社内SE
年収 | 450万円〜650万円 |
---|---|
勤務地 | 愛知県豊橋市 |
水平対向と星型とロータリーエンジン特集

スバル新型レヴォーグの新1.8ℓ水平対向4気筒ターボCB18 vs マツダ...
スバルの1.8ℓリーンバーンターボ「CB18型」とはどんなエンジンか...

1.8ℓ直噴リーンバーンターボ! 次期スバル・レヴォーグから始まる...

内燃機関超基礎講座 | 星型エンジン、その複雑で精緻な構造

内燃機関超基礎講座 | 直噴技術がロータリーエンジンを救う? DIS...

いま再びマツダの水素ロータリーエンジンへの期待「REは水素燃料...
ホンダエンジンの技術力は凄い|内燃機関超基礎講座特集

内燃機関超基礎講座 | V型5気筒という奇妙なエンジンの理由[ホン...

内燃機関超基礎講座 | ホンダが作った「本当のアトキンソンサイク...

内燃機関超基礎講座 | NA時代のタイプRが搭載していた2.0ℓエンジ...

内燃機関超基礎講座 | ホンダ F1 エンジンのコンロッド 高い燃焼...

内燃機関超基礎講座 | ホンダ初代NSXのエンジン[C30A/C32B]虎...

内燃機関超基礎講座 | ホンダのユニークな気筒休止システム[VCM...
会員必読記事|MotorFan Tech 厳選コンテンツ

フェアレディZ432の真実 名車再考 日産フェアレディZ432 Chapter2...

マツダ ロータリーエンジン 13B-RENESISに至る技術課題と改善手法...

マツダSKYACTIV-X:常識破りのブレークスルー。ガソリンエンジン...

ターボエンジンに過給ラグが生じるわけ——普段は自然吸気状態

林義正先生、「トルクと馬力」って何が違うんですか、教えてくだ...

マツダ×トヨタのSKYACTIV-HYBRIDとはどのようなパワートレインだ...
3分でわかる! クルマとバイクのテクノロジー超簡単解説

3分でわかる! スーパーカブのエンジンが壊れない理由……のひとつ...

3分でわかる! マツダのSKYACTIV-X(スカイアクティブ-X)ってな...

スーパーカブとクロスカブの運転が楽しいのは自動遠心クラッチ付...

ホンダCB1100の並列4気筒にはなぜV8のようなドロドロ感があるのか...

ホンダ・シビック タイプRの謎、4気筒なのになぜマフラーが3本?
