AI利活用構想「HAICoLab」に基づいて開発。関連する他の領域で学習したAIの予測能力を移植(転移学習)することによって予測精度を向上
今回のシステムは同社が2020年10月に策定したAI利活用構想「HAICoLab(ハイコラボ)」に基づいて開発。人がタイヤの設計パラメーターである構造や形状に関する仕様データ、コンパウンドなどの物性値に関する材料データ、評価条件を入力すると予測されるタイヤ特性値をAIが出力する。また、同システムではタイヤ設計で起こりがちなAIの予測精度の低下を抑制している。
内部構造が異なるタイヤでは設計パラメーターの種類や数が異なるため、AIの学習に利用する全データを構造特徴に合わせて細分化して使い分ける必要があるが、学習データの細分化によってAIの予測精度が低くなることが少なくない。そこで関連する他の領域で学習したAIの予測能力を移植(転移学習)することによって予測精度を向上させている。
「HAICoLab(ハイコラボ)」という名称は、Humans and AI collaborate for digital innovationをもとにした造語で、人とAIとの共同研究所という意味合いが込められている。

横浜ゴムは2020年12月に、AIを活用したタイヤ用ゴムの配合物性値予測システムを実用化している。今後は今回のタイヤ特性値予測システムと組み合わせることで、多岐にわたるタイヤ商品開発に利用していく考えだ。
「HAICoLab」は人間特有のひらめきや発想力とAIが得意とする膨大なデータ処理能力を活かした“人とAIとの協奏”によってデジタル革新を目指す構想。人が設定する仮説に沿ったデータの生成・収集とAIによる予測・分析・探索を繰り返すことで未踏領域での知見の発見を目指す。
同社はこれまでにも2017年にマテリアルズ・インフォマティクスによるゴム材料開発技術、インフォマティクス技術を活用したタイヤ設計技術を発表するなど、材料およびタイヤの設計開発プロセスでAIを活用した技術開発を進めてきた。
現在は「HAICoLab」のもと、プロセスに加え製品やサービスなどの革新を目指しAI利活用を推進。これにより同社は、ユーザーエクスペリエンスの向上および内閣府が提唱するAIやIoTなどの革新技術により実現する新たな未来社会の姿「Society 5.0」の実現に貢献する。